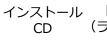
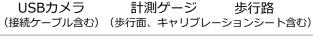
■システム構成



パソコン



ドングル (ライセンス)

ソフトウェア

■計測装置仕様

USBカメラ(専用)	インタフェース	USB3.0
	解像度	1440×1080, 1440×640, 1024×450 他
	フレームレート	30fps, 60fps, 100fps, 120fps 他 ※解像度により選択できるフレームレートが変わります
計測ゲージ ※1	サイズ	934 (W) ×314 (D) ×874 (H) mm ※お客様の撮影条件に応じてカスタマイズ可能
	歩行面	アクリル板
	歩行路	回廊型(お客様の撮影条件に応じてカスタマイズ可能)
パソコン	推奨スペック	OS: Windows10 Pro 64bit, Windows11 Pro 64bit
		CPU:Intel Core-i5プロセッサ第8世代以降
		メモリ:16GB以上
		ディスク : SSD 512GB以上
		その他: USB3.0ポート搭載機種

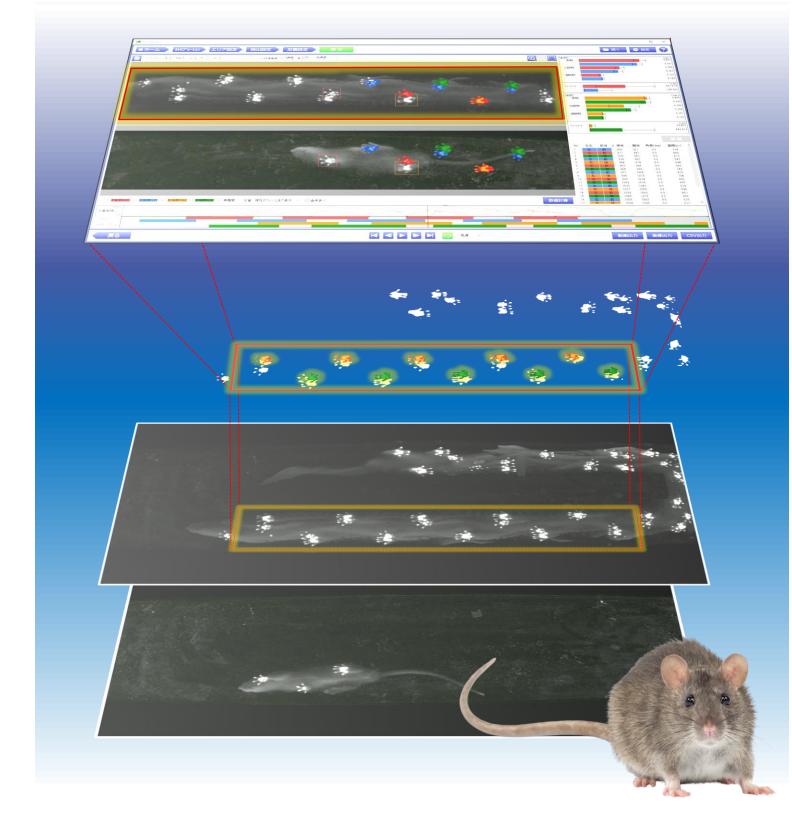
※1:マウス・ラットを想定した装置です。計測ゲージは、対象の動物によってカスタマイズ可能です。例)マーモセット

■ソフトウェア仕様

■ グノトウエア仕様	
データ管理	データベース管理 ※実験内容や担当者ごとに切り替えることも可能 個体識別ID・個体名・計測日・計測担当者・キーワード等でデータ検索可能
分析エリア設定	分析エリア指定、分析区間指定、進行方向指定
画像処理	ノイズ除去(自動・手動)、 修正DLT法によるレンズ歪補正、 画像補正(コントラスト、明るさ、ガンマ補正)
足裏検出	AIによる足裏候補の自動検出 ※手動による登録及び修正も可能 検出閾値調整
解析機能	時間因子算出(歩行周期、立脚期時間、遊脚期時間)、 距離因子算出(ストライド長)、接地・離地時点リスト表示、 足裏表示(全足表示、再生連動表示)、面積グラフ、 立脚期バーグラフ、接地状態のコマ送り再生 簡易数値計算(画像上での2点間距離および3点間の角度)
出力機能	CSV出力、静止画出力、動画出力

- プログラム名、システム名は、一般に各メーカーの(登録)商標です。
- 本カタログに掲載されている製品の色は、印刷の都合上、実際のものと異なることがあります。また、改良のため予告なく仕様を変更することがあります。

キッセイコムテック株式会社


本 社 公共・医療ソリューション事業部 〒390-1293 長野県松本市和田4010番10 TEL: 0263-48-5551(直通) FAX: 0263-48-1284 E-mail: motion@comtec.kicnet.co.jp

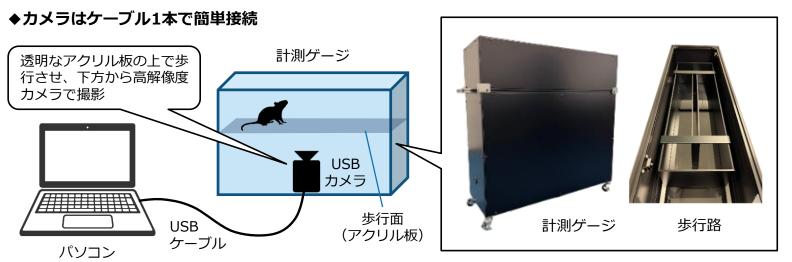
URL https://www.kicnet.co.jp/

紙とインクで行われてきた「Footprint」分析をデジタル化

- マウスやラットの歩行分析を低価格で実現!
- 明所・暗所のどちらでも行動(足裏)を撮影可能。
- 遡り録画によって"まっすぐ自然に"歩いた区間だけを効率よく撮影。
- AIで足裏の候補を自動検出。※手動による登録及び修正も可能

解析

出力 保存



こちらから

①撮影

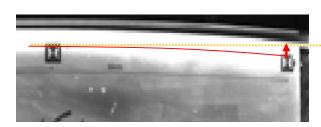
◆遡り撮影で"良いデータ"を逃さない

◆ソフトウェアでカメラを制御

シャッタースピードやゲインの設定、撮影

◆回廊型の歩行路で連続歩行・連続撮影

※直線型も提供可能 (カスタマイズ)


◆その他

- ・明所、暗所のどちらでも撮影が可能
- ・撮影後自動的にデータベースへ保存

②画像処理/足裏検出


◆画像処理


- ・キャリブレーションによるレンズ歪み補正
- ・ノイズ(糞・尿の汚れなど)の除去

◆足裏検出

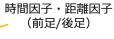
- ・合成画像の生成
- ・AIによる足裏の検出、接地離地タイミングの検出

※手動修正も可能

3解析

時間因子

距離因子

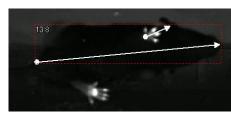

足の向き

足裏面積

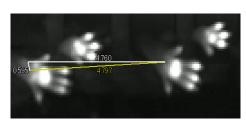
◆解析結果の表示

合成動画再生(全足裏表示/足跡表示)、面積グラフ、立脚期バー、時間因子・距離因子、接地/離地/足の向きリスト

接地・離地タイミング 足の向き(角度) リスト


※接地から離地まで動きを可視化

◆数値計算(簡易)


動画や合成画像上で

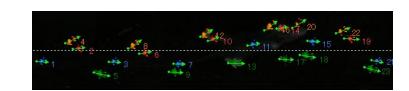
- ・距離(歩幅等)
- ・3点角度
- ・4点角度(体幹と足の向き等)

の計算が可能

4点角度の計算例

距離(歩幅)の計算例

④出力/保存


◆データベースによるデータ管理

データベース管理により過去データの簡単検索

◆結果出力

従来の「Footprint」の結果に相当する合成画像や、動画 出力、解析結果のCSV出力が可能

